SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Botch-Jones S, Foss J, Barajas D, Kero F, Young C, Weisenseel J. Forensic Sci. Int. 2016; 267: 89-95.

Affiliation

PerkinElmer Environmental Health, 2651 Warrenville Road, Suite 100, Downers Grove, IL 60515, United States. Electronic address: Jason.weisenseel@perkinelmer.com.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.forsciint.2016.08.008

PMID

27572638

Abstract

New psychoactive substances (NPS) have been associated with fatalities and severe injuries in a number of cases in the United States and have led investigators to rethink traditional drug monitoring protocols. Of particular interest are the variable phenethylamine chemical structures known as 'NBOMes', which pose an emerging threat to public health with incidence steadily growing over the past decade. In this study, direct sample analysis (DSA)-time of flight mass spectrometry was employed to leverage rapid and sensitive ambient ionization mass spectrometry without chromatographic separation as verified with an authentic case sample. Samples for method development were prepared at Boston University School of Medicine's Biomedical Forensic Sciences program (Boston, MA) and analyzed at the State of Maine Health and Environmental Testing Laboratory's Forensic Chemistry Section (Augusta, ME). Preliminary method development work was performed at the University of Central Florida (Orlando, FL). DSA without any extraction step in addition to the evaluation of methanol, dichloromethane and hexane extractions were conducted. Methanol was found to not be a suitable extraction solvent for DSA analysis of these compounds. For the screening of NBOMe designer drug variables on blotter paper, DSA-TOFMS was successful at reducing analysis time to ∼15s per sample, for qualitative identification for the selected analytes of interest. The analysis of an authentic forensic case sample by DSA-TOFMS using the method development parameters demonstrates its utility in forensic laboratories. 25C-NBOMe was identified with an exact mass accuracy of 0.60ppm.

Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print