SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zangenehpour S, Miranda-Moreno LF, Saunier N. Transp. Res. C Emerg. Technol. 2015; 56: 161-176.

Copyright

(Copyright © 2015, Elsevier Publishing)

DOI

10.1016/j.trc.2015.04.003

PMID

unavailable

Abstract

Pedestrians and cyclists are amongst the most vulnerable road users. Pedestrian and cyclist collisions involving motor-vehicles result in high injury and fatality rates for these two modes. Data for pedestrian and cyclist activity at intersections such as volumes, speeds, and space-time trajectories are essential in the field of transportation in general, and road safety in particular. However, automated data collection for these two road user types remains a challenge. Due to the constant change of orientation and appearance of pedestrians and cyclists, detecting and tracking them using video sensors is a difficult task. This is perhaps one of the main reasons why automated data collection methods are more advanced for motorized traffic. This paper presents a method based on Histogram of Oriented Gradients to extract features of an image box containing the tracked object and Support Vector Machine to classify moving objects in crowded traffic scenes. Moving objects are classified into three categories: pedestrians, cyclists, and motor vehicles. The proposed methodology is composed of three steps: (i) detecting and tracking each moving object in video data, (ii) classifying each object according to its appearance in each frame, and (iii) computing the probability of belonging to each class based on both object appearance and speed. For the last step, Bayes' rule is used to fuse appearance and speed in order to predict the object class. Using video datasets collected in different intersections, the methodology was built and tested. The developed methodology achieved an overall classification accuracy of greater than 88%. However, the classification accuracy varies across modes and is highest for vehicles and lower for pedestrians and cyclists. The applicability of the proposed methodology is illustrated using a simple case study to analyze cyclist-vehicle conflicts at intersections with and without bicycle facilities.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print