SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hashemzaei M, Barani AK, Iranshahi M, Rezaee R, Tsarouhas K, Tsatsakis AM, Wilks MF, Tabrizian K. Environ. Toxicol. Pharmacol. 2016; 46: 110-115.

Affiliation

Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran; Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran. Electronic address: ttoxicologist@gmail.com.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.etap.2016.07.010

PMID

27458698

Abstract

Carbon monoxide (CO) poisoning leads to tissue hypoxia resulting in cardiovascular disturbances. Resveratrol (RES) is considered a natural cardioprotective agent especially in the setting of ischemia/reperfusion injury. In the present study, the cardioprotective potential of RES against CO-induced cardiotoxicity was evaluated. 45 male Wistar rats, animals were randomly assigned to 5 experimental groups. The first group served as negative control and was not exposed to CO. All remaining rats were exposed to CO 3000ppm for 60min. The second group received normal saline following CO exposure, while groups 3, 4 and 5 were injected intraperitoneally with different doses of RES (1, 5 and 10mg/kg, respectively). Histopathological examination showed that RES administration reduced myocardial lesions compared to control groups. Myocardial Akt expression was significantly increased in rats treated with the highest dose of RES (p<0.05) compared to CO-exposed non-treated animals. Caspase-3 activity in rat cardiomyocytes of RES-treated animals was significantly decreased in a dose-dependent manner. ECG findings did not differ significantly among CO-exposed groups. In conclusion, the present study offers evidence of a protective effect of RES administration on CO-induced cardiotoxicity via Akt up-regulation and attenuation of caspase-3 activity in rat hearts.

Copyright © 2016 Elsevier B.V. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print