SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tyrell D, Perlman AB. Transp. Res. Rec. 2003; 1825: 8-14.

Copyright

(Copyright © 2003, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

unavailable

PMID

unavailable

Abstract

Comparisons are made of the effectiveness of competing crashworthiness strategies-crash energy management (CEM) and conventional passenger train design. CEM is a strategy for providing rail equipment crashworthiness that uses crush zones at the ends of cars. These zones are designed to collapse in a controlled way during a collision, distributing the crush among the train cars. This technique preserves the occupied spaces in the train and limits the decelerations of the occupant volumes. Two scenarios are used to evaluate the effectiveness of the crashworthiness strategies-(a) a train-to-train collision of a cab-car-led passenger train with a standing locomotive-led passenger train and (b) a grade-crossing collision of a cab-car-led passenger train with a standing highway vehicle. The maximum speed for which all the occupants are expected to survive and the predicted increase in fatalities and injuries with increasing collision speed are determined for both train designs. Crash energy management is shown to significantly increase the maximum speed at which all the occupants could survive for both grade crossing and train-to-train collisions for cab-car-led trains, at the expense of modestly increasing the speeds at which occupants impact the interior in train-to-train collisions.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print