SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dong C, Shi J, Huang B, Chen X, Ma Z. Int. J. Inj. Control Safe. Promot. 2017; 24(2): 208-221.

Affiliation

School of Automobile, Chang'an University , Shaanxi , China.

Copyright

(Copyright © 2017, Informa - Taylor and Francis Group)

DOI

10.1080/17457300.2016.1166138

PMID

27094620

Abstract

Recent research demonstrates the appropriateness of multivariate regression models in crash count modelling when one specific type of crash counts needs to be analysed, since they can better handle the correlated issues in multiple crash counts. In this paper, a random-parameter multivariate zero-inflated Poisson (RMZIP) regression model is proposed as an alternative multivariate methodology for jointly modelling crash counts simultaneously. Using this RMZIP model, we are able to account for the heterogeneity due to the unobserved roadway geometric design features and traffic characteristics. Our formulation also has the merit of handling excess zeros in correlated crash counts, a phenomenon that is commonly found in practice. The Bayesian method is employed to estimate the model parameters. We use the proposed modelling framework to predict crash frequencies at urban signalized intersections in Tennessee. To investigate the model performances, three models - a fixed-parameter MZIP model, a random-parameter multivariate negative binomial (RMNB) model, and a random-parameter multivariate zero-inflated negative binomial (RMZINB) model - have been employed as the comparison methods. The comparison results show that the proposed RMZIP models provide a satisfied statistical fit with more variables producing statistically significant parameters. In other word, the RMZIP models have the potential to provide a fuller understanding of how the factors affect crash frequencies on specific roadway intersections. A variety of variables are found to significantly influence the crash frequencies by varying magnitudes. These variables result in random parameters and thereby their effects on crash frequencies are found to vary significantly across the sampled intersections.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print