SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Montazeri-Gh M, Fotouhi A. Sci. Iran. 2011; 18(4): 930-937.

Copyright

(Copyright © 2011, Sharif University of Technology, Publisher Elsevier Publishing)

DOI

10.1016/j.scient.2011.07.004

PMID

unavailable

Abstract

This paper presents a methodological approach to traffic condition recognition, based on driving segment clustering. Traffic condition recognition has many applications to various areas, such as intelligent transportation, adaptive cruise control, pollutant emissions dispersion, safety, and intelligent control strategies in hybrid electric vehicles. This study focuses on the application of driving condition recognition to the intelligent control of hybrid electric vehicles. For this purpose, driving features are identified and used for driving segment clustering, using the k -means clustering algorithm. Many combinations of driving features and different numbers of clusters are evaluated, in order to achieve the best traffic condition recognition results. The results demonstrate that traffic conditions can be correctly recognized in 87 percent of situations using the proposed approach.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print