SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Castaldo R, Melillo P, Izzo R, De Luca N, Pecchia L. IEEE J. Biomed. Health Inform. 2016; ePub(ePub): ePub.

Copyright

(Copyright © 2016, Institute of Electrical and Electronics Engineers)

DOI

10.1109/JBHI.2016.2543960

PMID

27008681

Abstract

Falls are a major problem of later life having severe consequences on quality of life and a significant burden in occidental countries. Many technological solutions have been proposed to assess the risk or to predict falls and the majority is based on accelerometers and gyroscopes. However, very little was done for identifying first time fallers, which are very difficult to recognise. This paper presents a meta-model predicting falls using short term Heart Rate Variability (HRV) analysis acquired at the baseline. 170 hypertensive patients (age: 72 ± 8 years, 56 female) were investigated, of which 34 fell once in the 3 months after the baseline assessment. This study is focused on hypertensive patients, which were considered as convenient pragmatic sample, as they undergo regular outpatient visits, during which short term ECG can be easily recorded without significant increase of healthcare costs. For each subject, 11 consecutive excerpts of 5 minutes each (55 min) were extracted from ECGs recorded between 10:30 and 12:30 and analysed. Linear and nonlinear HRV features were extracted and averaged among the 11 excerpts, which were, then, considered for the statistical and data mining analysis. The best predictive meta-model was based on Multinomial Naïve Bayes, which enabled to predict first-time fallers with sensitivity, specificity and accuracy rates of 72%, 61%, 68% respectively.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print