SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

DeVita P, Rider P, Hortobagyi T. Gait Posture 2016; 45: 25-30.

Affiliation

Center For Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; The Netherlands and Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.gaitpost.2015.12.040

PMID

26979878

Abstract

A consensus exists that high knee joint forces are a precursor to knee osteoarthritis and weight loss reduces these forces. Because large weight loss also leads to increased step length and walking velocity, knee contact forces may be reduced less than predicted by the magnitude of weight loss. The purpose was to determine the effects of weight loss on knee muscle and joint loads during walking in Class III obese adults. We determined through motion capture, force platform measures and biomechanical modeling the effects of weight loss produced by gastric bypass surgery over one year on knee muscle and joint loads during walking at a standard, controlled velocity and at self-selected walking velocities. Weight loss equaling 412N or 34% of initial body weight reduced maximum knee compressive force by 824N or 67% of initial body weight when walking at the controlled velocity. These changes represent a 2:1 reduction in knee force relative to weight loss when walking velocity is constrained to the baseline value. However, behavioral adaptations including increased stride length and walking velocity in the self-selected velocity condition attenuated this effect by ∼50% leading to a 392N or 32% initial body weight reduction in compressive force in the knee joint. Thus, unconstrained walking elicited approximately 1:1 ratio of reduction in knee force relative to weight loss and is more indicative of walking behavior than the standard velocity condition. In conclusion, massive weight loss produces dramatic reductions in knee forces during walking but when patients stride out and walk faster, these favorable reductions become substantially attenuated.

Copyright © 2016 Elsevier B.V. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print