SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Harrison J. Transp. Res. Rec. 1997; 1584: 17-21.

Copyright

(Copyright © 1997, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.3141/1584-03

PMID

unavailable

Abstract

The Intermodal Surface Transportation Efficiency Act of 1991 required the U.S. Department of Transportation to evaluate the commercial feasibility of high-speed ground transportation--a family of technologies ranging from incremental rail improvements to high-speed rail and magnetic levitation (Maglev) systems--in selected urban corridors. The evaluation involved estimating travel times, capital costs, operation and maintenance costs, and ridership for proposed service frequencies and then computing the potential return on investment from fares and other potential revenues. The results are documented in a U.S. Department of Transportation report generally referred to as the commercial feasibility study (CFS). Two elements of the CFS are addressed here: travel times and capital costs in four illustrative corridors--Chicago to St. Louis; Los Angeles to San Francisco; Eugene, Oreg., to Vancouver, B.C.; and Miami to Tampa via Orlando. Analysis of the results reveals common cost trends: for average speeds up to about 200 km/hr (125 mph), the initial investment required is generally in the range $1.6 to $3 million per route-kilometer ($2.6 to 4.8 million per route-mile). Above this speed regime (which varies by corridor), the initial investment increases steadily with speed, generally reaching $10 to $12 million per route-km ($16 to $19 million per route-mi) for very-high-speed rail systems and from $14 to $19 million per route-km ($23 to $31 million per route-mi) for Maglev systems. Analysis of the capital cost estimates reveals that despite the wide range of initial costs for the high-speed options, the cost per minute of trip time saved is remarkably consistent in corridors of similar length and with similar terrains. Cost-effectiveness plots are provided, allowing the reader to compare the performance of each of the four corridors in terms of trip time savings and cost per route-kilometer.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print