SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Signore J, Abdel-Maksoud M, Dempsey B. Transp. Res. Rec. 1997; 1584: 41-45.

Copyright

(Copyright © 1997, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.3141/1584-06

PMID

unavailable

Abstract

Buckling and cracking of steel rails is a contributing factor in accidents on railroads today. Detection and notification of buckled track sections before a train reaches these locations will significantly increase rail safety. A fiber-optic-based sensing system, with the fiber affixed to a beam, was developed and evaluated to detect buckled regions. The purpose of this research is to evaluate the sensitivity of the fiber-optic sensing system to buckling of a long structural member. Numerous facets of fiber-optic sensing have been explored. Fiber-to-steel bonding techniques were examined and tested. Full-scale laboratory testing was conducted by elastically buckling a 24.4-m-long (80-ft) wide-flange section with hydraulic rams. Typical measurement accuracy within 10 percent of theoretical predictions was achieved by optical time domain reflectometry techniques. For field testing, however, a more robust solution is sought and is currently under development. It is suggested that a lower-cost fiber break or bend detector is a suitable option. The optical fiber will break or bend at the location of rail elongation in the buckled area, allowing the detection equipment to locate the buckled area.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print