SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tango F, Botta M. IEEE Trans. Intel. Transp. Syst. 2013; 14(2): 894-905.

Copyright

(Copyright © 2013, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TITS.2013.2247760

PMID

unavailable

Abstract

There is accumulating evidence that driver distraction is a leading cause of vehicle crashes and incidents. In particular, increased use of so-called in-vehicle information systems (IVIS) and partially autonomous driving assistance systems (PADAS) have raised important and growing safety concerns. Thus, detecting the driver's state is of paramount importance, to adapt IVIS and PADAS accordingly, therefore avoiding or mitigating their possible negative effects. The purpose of this paper is to show a method for the nonintrusive and real-time detection of visual distraction, using vehicle dynamics data and without using the eye-tracker data as inputs to classifiers. Specifically, we present and compare different models that are based on well-known machine learning (ML) methods. Data for training the models were collected using a static driving simulator, with real human subjects performing a specific secondary task [i.e., a surrogate visual research task (SURT)] while driving. Different training methods, model characteristics, and feature selection criteria have been compared. Based on our results, using a support vector machine (SVM) has outperformed all the other ML methods, providing the highest classification rate for most of the subjects. Potential applications of this paper include the design of an adaptive IVIS and of a "smarter" PADAS.


Keywords: Driver distraction;


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print