SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Oyini Mbouna R, Kong SG, Chun MG. IEEE Trans. Intel. Transp. Syst. 2013; 14(3): 1462-1469.

Copyright

(Copyright © 2013, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TITS.2013.2262098

PMID

unavailable

Abstract

This paper presents visual analysis of eye state and head pose (HP) for continuous monitoring of alertness of a vehicle driver. Most existing approaches to visual detection of nonalert driving patterns rely either on eye closure or head nodding angles to determine the driver drowsiness or distraction level. The proposed scheme uses visual features such as eye index (EI), pupil activity (PA), and HP to extract critical information on nonalertness of a vehicle driver. EI determines if the eye is open, half closed, or closed from the ratio of pupil height and eye height. PA measures the rate of deviation of the pupil center from the eye center over a time period. HP finds the amount of the driver's head movements by counting the number of video segments that involve a large deviation of three Euler angles of HP, i.e., nodding, shaking, and tilting, from its normal driving position. HP provides useful information on the lack of attention, particularly when the driver's eyes are not visible due to occlusion caused by large head movements. A support vector machine (SVM) classifies a sequence of video segments into alert or nonalert driving events. Experimental results show that the proposed scheme offers high classification accuracy with acceptably low errors and false alarms for people of various ethnicity and gender in real road driving conditions.


Keywords: Driver distraction;


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print