SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ahlstrom C, Victor TW, Wege C, Steinmetz E. IEEE Trans. Intel. Transp. Syst. 2012; 13(2): 553-564.

Copyright

(Copyright © 2012, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TITS.2011.2174786

PMID

unavailable

Abstract

Driver distraction and driver inattention are frequently recognized as leading causes of crashes and incidents. Despite this fact, there are few methods available for the automatic detection of driver distraction. Eye tracking has come forward as the most promising detection technology, but the technique suffers from quality issues when used in the field over an extended period of time. Eye-tracking data acquired in the field clearly differs from what is acquired in a laboratory setting or a driving simulator, and algorithms that have been developed in these settings are often unable to operate on noisy field data. The aim of this paper is to develop algorithms for quality handling and signal enhancement of naturalistic eye- and head-tracking data within the setting of visual driver distraction. In particular, practical issues are highlighted. Developed algorithms are evaluated on large-scale field operational test data acquired in the Sweden-Michigan Field Operational Test (SeMiFOT) project, including data from 44 unique drivers and more than 10 000 trips from 13 eye-tracker-equipped vehicles.

RESULTS indicate that, by applying advanced data-processing methods, sensitivity and specificity of eyes-off-road glance detection can be increased by about 10%. In conclusion, postenhancement and quality handling is critical when analyzing large databases with naturalistic eye-tracking data. The presented algorithms provide the first holistic approach to accomplish this task.


Keywords: Driver distraction;


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print