SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ali T, Spreeuwers L, Veldhuis R, Meuwly D. Sci. Justice 2015; 55(6): 499-508.

Affiliation

Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, The Hague, The Netherlands. Electronic address: d.meuwly@nfi.minvenj.nl.

Copyright

(Copyright © 2015, Forensic Science Society, Publisher Elsevier Publishing)

DOI

10.1016/j.scijus.2015.05.003

PMID

26654086

Abstract

Recently, in the forensic biometric community, there is a growing interest to compute a metric called "likelihood-ratio" when a pair of biometric specimens is compared using a biometric recognition system. Generally, a biometric recognition system outputs a score and therefore a likelihood-ratio computation method is used to convert the score to a likelihood-ratio. The likelihood-ratio is the probability of the score given the hypothesis of the prosecution, Hp (the two biometric specimens arose from a same source), divided by the probability of the score given the hypothesis of the defense, Hd (the two biometric specimens arose from different sources). Given a set of training scores under Hp and a set of training scores under Hd, several methods exist to convert a score to a likelihood-ratio. In this work, we focus on the issue of sampling variability in the training sets and carry out a detailed empirical study to quantify its effect on commonly proposed likelihood-ratio computation methods. We study the effect of the sampling variability varying: 1) the shapes of the probability density functions which model the distributions of scores in the two training sets; 2) the sizes of the training sets and 3) the score for which a likelihood-ratio is computed. For this purpose, we introduce a simulation framework which can be used to study several properties of a likelihood-ratio computation method and to quantify the effect of sampling variability in the likelihood-ratio computation. It is empirically shown that the sampling variability can be considerable, particularly when the training sets are small. Furthermore, a given method of likelihood-ratio computation can behave very differently for different shapes of the probability density functions of the scores in the training sets and different scores for which likelihood-ratios are computed.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print