SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bhatia U, Kumar D, Kodra E, Ganguly AR. PLoS One 2015; 10(11): e0141890.

Affiliation

Sustainability and Data Sciences Lab, Department of Civil & Environmental Engineering, Northeastern University, Boston, MA, United States of America.

Copyright

(Copyright © 2015, Public Library of Science)

DOI

10.1371/journal.pone.0141890

PMID

26536227

Abstract

The structure, interdependence, and fragility of systems ranging from power-grids and transportation to ecology, climate, biology and even human communities and the Internet have been examined through network science. While response to perturbations has been quantified, recovery strategies for perturbed networks have usually been either discussed conceptually or through anecdotal case studies. Here we develop a network science based quantitative framework for measuring, comparing and interpreting hazard responses as well as recovery strategies. The framework, motivated by the recently proposed temporal resilience paradigm, is demonstrated with the Indian Railways Network. Simulations inspired by the 2004 Indian Ocean Tsunami and the 2012 North Indian blackout as well as a cyber-physical attack scenario illustrate hazard responses and effectiveness of proposed recovery strategies. Multiple metrics are used to generate various recovery strategies, which are simply sequences in which system components should be recovered after a disruption. Quantitative evaluation of these strategies suggests that faster and more efficient recovery is possible through network centrality measures. Optimal recovery strategies may be different per hazard, per community within a network, and for different measures of partial recovery. In addition, topological characterization provides a means for interpreting the comparative performance of proposed recovery strategies. The methods can be directly extended to other Large-Scale Critical Lifeline Infrastructure Networks including transportation, water, energy and communications systems that are threatened by natural or human-induced hazards, including cascading failures. Furthermore, the quantitative framework developed here can generalize across natural, engineered and human systems, offering an actionable and generalizable approach for emergency management in particular as well as for network resilience in general.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print