SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Schleicher B, Nasr I, Trasser A, Schumacher H. IEEE Trans. Microw. Theory Tech. 2013; 61(5): 2076-2085.

Copyright

(Copyright © 2013)

DOI

10.1109/TMTT.2013.2252185

PMID

unavailable

Abstract

In this paper an impulse-radio ultra-wideband (IR-UWB) hardware demonstrator is presented, which can be used as a radar sensor for highly precise object tracking and breath-rate sensing. The hardware consists of an impulse generator integrated circuit (IC) in the transmitter and a correlator IC with an integrating baseband circuit as correlation receiver. The radiated impulse is close to a fifth Gaussian derivative impulse with sigma = 51 ps, efficiently using the Federal Communications Commission indoor mask. A detailed evaluation of the hardware is given. For the tracking, an impulse train is radiated by the transmitter, and the reflections of objects in front of the sensor are collected by the receiver. With the reflected signals, a continuous hardware correlation is computed by a sweeping impulse correlation. The correlation is applied to avoid sampling of the RF impulse with picosecond precision. To localize objects precisely in front of the sensor, three impulse tracking methods are compared: Tracking of the maximum impulse peak, tracking of the impulse slope, and a slope-to-slope tracking of the object's reflection and the signal of the static direct coupling between transmit and receive antenna; the slope-to-slope tracking showing the best performance. The precision of the sensor is shown by a measurement with a metal plate of 1-mm sinusoidal deviation, which is clearly resolved. Further measurements verify the use of the demonstrated principle as a breathing sensor. The breathing signals of male humans and a seven-week-old infant are presented, qualifying the IR-UWB radar principle as a useful tool for breath-rate determination. KW: Hyperthermia in automobiles


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print