SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Weimer I, Worek F, Seeger T, Thiermann H, Eckle VS, Grasshoff C, Antkowiak B. Toxicol. Lett. 2015; 244: 149-153.

Affiliation

Department of Anaesthesiology, Experimental Anaesthesiology Section, Eberhard-Karls-University, Waldhoernlestrasse 22, 72072 Tuebingen, Germany; Werner-Reichardt-Centre for Integrative Neuroscience, Eberhard-Karls-University, 72076 Tuebingen, Germany.

Copyright

(Copyright © 2015, Elsevier Publishing)

DOI

10.1016/j.toxlet.2015.08.004

PMID

26256036

Abstract

Aside from nerve agents, various highly toxic pesticides belong to the group of organophosphorus (OP) compounds, thereby causing a large number of intoxications every year. Unfortunately, there are still shortcomings in the current treatment for OP poisoning and research on novel therapeutic options is restricted in several aspects. In this study we investigated the suitability of organotypic cocultures for pharmacological in vitro studies involving OP compounds. These slice cultures are derived from murine spinal cord and muscle tissue forming functional neuromuscular synapses, which trigger spontaneous contractions of muscle fibers. Using video microscopy to quantify muscle activity, we assessed the viability of cocultures after exposure to soman and VX, and the associated loss and recovery of neuromuscular function. Antidotal treatment was not provided. The application of nerve agents led to an almost complete loss of muscle activity. However, cell cultures regained equivalent muscular function to the control situation three and seven days after intoxication. In summary, the tested in vitro system could be a promising tool for the investigation of long term effects and therapeutic options for OP poisoning.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print