SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Martín-Alberca C, Garcia-Ruiz C, Delémont O. J. Sep. Sci. 2015; ePub(ePub): ePub.

Affiliation

Ecole des Sciences Criminelles, University of Lausanne, 1015, Lausanne-Dorigny, Switzerland.

Copyright

(Copyright © 2015, John Wiley and Sons)

DOI

10.1002/jssc.201500337

PMID

26179121

Abstract

The detection and identification of ignitable liquid residues in fire debris can be meaningful in fire investigations. However, background pyrolysis products and weathering hinder the identification and classification steps. In addition to those processes, the acidification of the ignitable liquids before the combustion process could make those tasks even more difficult. Nevertheless, there are no systematic studies assessing the extraction, analysis and composition of acidified ignitable liquid residues obtained from fire debris. In this work, a methodology for the study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry is proposed. This methodology has been evaluated, first with simulated solutions (gasoline-sulphuric acid mixtures set on fire under controlled conditions), and then with analysis of samples from real fire debris obtained from 18 chemical ignition Molotov cocktails made with sulfuric acid and three different ignitable liquids (two types of gasoline and diesel fuel). In addition, the extensive modifications observed in chromatograms of acidified ignitable liquid residues regarding neat and weathered samples were studied. These alterations were produced by the combustion and acidification processes. As a consequence, tert-butylated compounds are proposed as diagnostic indicators for the identification of acidified gasoline in fire debris, even in strongly weathered samples. This article is protected by copyright. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print