SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Laftah Al-Yaseen W, Ali Othman Z, Ahmad Nazri MZ. ScientificWorldJournal 2015; 2015: e294761.

Affiliation

Data Mining and Optimization Research Group (DMO), Centre for Artificial Intelligence Technology (CAIT), School of Computer Science, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bandar Baru Bangi, Malaysia.

Copyright

(Copyright © 2015, ScientificWorld, Ltd.)

DOI

10.1155/2015/294761

PMID

26161437

PMCID

PMC4486215

Abstract

Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modified K-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modified K-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print