SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Beggs S. Can. J. Psychiatry 2015; 60(4): 176-180.

Affiliation

Research Associate, Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario; Assistant Professor, Faculty of Dentistry, University of Toronto, Toronto, Ontario.

Copyright

(Copyright © 2015, Canadian Psychiatric Association, Publisher SAGE Publications)

DOI

unavailable

PMID

26174217

Abstract

The maturation of the central nervous system's (CNS's) sensory connectivity is driven by modality-specific sensory input in early life. For the somatosensory system, this input is the physical, tactile interaction with the environment. Nociceptive circuitry is functioning at the time of birth; however, there is still considerable organization and refinement of this circuitry that occurs postnatally, before full discrimination of tactile and noxious input is possible. This fine-tuning involves separation of tactile and nociceptive afferent input to the spinal cord's dorsal horn and the maturation of local and descending inhibitory circuitry. Disruption of that input in early postnatal life (for example, by tissue injury or other noxious stimulus), can have a profound influence on subsequent development, and consequently the mature functioning of pain systems. In this review, the impact of neonatal surgical incision on nociceptive circuitry is discussed in terms of the underlying developmental neurobiology. The changes are complex, occurring at multiple anatomical sites within the CNS, and including both neuronal and glial cell populations. The altered sensory input from neonatal injury selectively modulates neuronal excitability within the spinal cord, disrupts inhibitory control, and primes the immune system, all of which contribute to the adverse long-term consequences of early pain exposure.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print