SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Davis RA, Wu R. Biometrika 2009; 96(3): 735-749.

Copyright

(Copyright © 2009, Biometrika Trust, Publisher Oxford University Press)

DOI

10.1093/biomet/asp029

PMID

unavailable

Abstract

We study generalized linear models for time series of counts, where serial dependence is introduced through a dependent latent process in the link function. Conditional on the covariates and the latent process, the observation is modelled by a negative binomial distribution. To estimate the regression coefficients, we maximize the pseudolikelihood that is based on a generalized linear model with the latent process suppressed. We show the consistency and asymptotic normality of the generalized linear model estimator when the latent process is a stationary strongly mixing process. We extend the asymptotic results to generalized linear models for time series, where the observation variable, conditional on covariates and a latent process, is assumed to have a distribution from a one-parameter exponential family. Thus, we unify in a common framework the results for Poisson log-linear regression models of Davis et al. (2000), negative binomial logit regression models and other similarly specified generalized linear models.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print