SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ashtari A, Bibeau E, Shahidinejad S. Transp. Sci. 2014; 48(2): 170-183.

Copyright

(Copyright © 2014, Institute for Operations Research and the Management Sciences)

DOI

10.1287/trsc.1120.0447

PMID

unavailable

Abstract

The challenges in the development of plug-in electric vehicle (PEV) powertrains are efficient energy management and optimum energy storage, for which the role of driving cycles that represent driver behaviour is instrumental. Discrepancies between standard driving cycles and real driving behaviour stem from insufficient data collection, inaccurate cycle construction methodology, and variations because of geography. In this study, we tackle the first issue by using the collected data from real-world driving of a fleet of 76 cars for more than one year in the city of Winnipeg (Canada), representing more than 44 million data points. The second issue is addressed by a proposed novel stochastic driving cycle construction method. The third issue limits the results to mainly Winnipeg and cities that have similar features, but the methodology can be used anywhere. The methodology develops the driving cycle using snippets extracted from recorded time-stamped speed of the vehicles from the collected database. The proposed Winnipeg Driving Cycle (WPG01) characteristics are compared to eight existing standard driving cycles and are more able to represent aggressive driving, which is critical in PEV design. An attempt is made to isolate how many differences could be attributed to the sample size and the methodology. The proposed construction methodology is flexible to be optimized for any selection of driving parameters and thus can be a recommended approach to develop driving cycles for any drive train topology, including internal combustion engine vehicles, hybrid vehicles, plug-in hybrid, and battery electric vehicles. Characterization of vehicle parking durations and types of parking (home, work, shopping), critical for duty cycles for PEV powertrains, are reported elsewhere. Here, the focus is on the mathematical approach to develop a drive cycle when a large database with high resolution of driving data is available. Keywords : driving cycle construction; stochastic modeling; optimization; plug-in electric vehicle (PEV); vehicle emissions


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print