SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Plotnik M, Azrad T, Bondi M, Bahat Y, Gimmon Y, Zeilig G, Inzelberg R, Siev-Ner I. J. Neuroengineering Rehabil. 2015; 12(1): e20.

Affiliation

Department of Orthopedic Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel. Itzhak.Siev-Ner@sheba.health.gov.il.

Copyright

(Copyright © 2015, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s12984-015-0002-z

PMID

25881130

Abstract

BACKGROUND: The study of gait at self-selected speed is important. Traditional gait laboratories being relatively limited in space provide insufficient path length, while treadmill (TM) walking compromises natural gait by imposing speed variables. Self-paced (SP) walking can be realized on TM using feedback-controlled belt speed. We compared over ground walking vs. SP TM in two self-selected gait speed experiments: without visual flow, and while subjects were immersed in a virtual reality (VR) environment inducing natural visual flow.

METHODS: Young healthy subjects walked 96 meters at self-selected comfortable speed, first over ground and then on the SP TM without (n=15), and with VR visual flow (n=11). Gait speed was compared across conditions for four 10 m long segments (7.5 - 17.5, 30.5 - 40.5, 55.5 - 65.5 and 78.5-88.5 m).

RESULTS: During over ground walking mean (± SD) gait speed was equal for both experimental groups (1.50 ± 0.13 m/s). Without visual flow, gait speed over SP TM was smaller in the first and second epochs as compared to over ground (first: 1.15 ±0.18 vs. second: 1.53 ± 0.13 m/s; p<0.05), and was comparable in the third and fourth (1.45 ± 0.19 vs. 1.49 ± 0.15 m/s; p>0.3). With visual flow, gait speed became comparable to that of over ground performance already in the first epoch (1.43 ± 0.22 m/s; p>0.17). Curve fitting analyses estimated that steady state velocity in SP TM walking is reached after shorter distanced passed with visual flow (24.6 ± 14.7 m) versus without (36.5 ± 18.7 m, not statistically significant; p=0.097). Steady state velocity was estimated to be higher in the presence of visual flow (1.61 ± 0.17 m/s) versus its absence (1.42 ± 1.19 m/s; p<0.05).

CONCLUSIONS: The SP TM walking is a reliable method for recording typical self-selected gait speed, provided that sufficient distance is first passed for reaching steady state. Seemingly, in the presence of VR visual flow, steady state of gait speed is reached faster. We propose that the gait research community joins forces to standardize the use of SP TMs, e.g., by unifying protocols or gathering normative data.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print