SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Argañaraz JP, Gavier Pizarro G, Zak M, Landi MA, Bellis LM. Sci. Total Environ. 2015; 520: 1-12.

Affiliation

Instituto de Diversidad y Ecología Animal (IDEA), CONICET, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000, Córdoba, Argentina. Electronic address: lbellis@com.uncor.edu.

Copyright

(Copyright © 2015, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2015.02.081

PMID

25782079

Abstract

Fires are a recurrent disturbance in Semiarid Chaco mountains of central Argentina. The interaction of multiple factors generates variable patterns of fire occurrence in space and time. Understanding the dominant fire drivers at different spatial scales is a fundamental goal to minimize the negative impacts of fires. Our aim was to identify the biophysical and human drivers of fires in the Semiarid Chaco mountains of Central Argentina and their individual effects on fire activity, in order to determine the thresholds and/or ranges of the drivers at which fire occurrence is favored or disfavored. We used fire frequency as the response variable and a set of 28 potential predictor variables, which included climatic, human, topographic, biological and hydrological factors. Data were analyzed using Boosted Regression Trees, using data from near 10,500 sampling points. Our model identified the fire drivers accurately (75.6% of deviance explained). Although humans are responsible for most ignitions, climatic variables, such as annual precipitation, annual potential evapotranspiration and temperature seasonality were the most important determiners of fire frequency, followed by human (population density and distance to waste disposals) and biological (NDVI) predictors. In general, fire activity was higher at intermediate levels of precipitation and primary productivity and in the proximity of urban solid waste disposals. Fires were also more prone to occur in areas with greater variability in temperature and productivity. Boosted Regression Trees proved to be a useful and accurate tool to determine fire controls and the ranges at which drivers favor fire activity. Our approach provides a valuable insight into the ecology of fires in our study area and in other landscapes with similar characteristics, and the results will be helpful to develop management policies and predict changes in fire activity in response to different climate changes and development scenarios.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print