SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kunimatsu-Sanuki S, Iwase A, Araie M, Aoki Y, Hara T, Nakazawa T, Yamaguchi T, Ono H, Sanuki T, Itoh M. BMJ Open 2015; 5(2): e006379.

Affiliation

Department of Risk Engineering, SIE, University of Tsukuba, Ibaraki, Japan.

Copyright

(Copyright © 2015, BMJ Publishing Group)

DOI

10.1136/bmjopen-2014-006379

PMID

25724982

Abstract

OBJECTIVE: To assess the driving fitness of patients with glaucoma by identifying specific areas and degrees of visual field impairment that threaten safe driving.

DESIGN: Case-control study. SETTING, AND PARTICIPANTS: This prospective study included 36 patients with advanced glaucoma, defined as Humphrey field analyzer (HFA; 24-2 SITA standard program) measurements of mean deviation in both eyes of worse than -12 dB, and 36 age-matched and driving exposure time-matched normal subjects. All participants underwent testing in a novel driving simulator (DS) system. Participants were recruited between September 2010 and January 2012. MAIN OUTCOME MEASURES: The number of collisions with simulated hazards and braking response time in 14 DS scenarios was recorded. Monocular HFA 24-2 test results from both eyes were merged to calculate the binocular integrated visual field (IVF). The position of the IVF subfields in which the collision-involved patients had lower sensitivity than the collision-uninvolved patients was compared with the track of the hazard. The cut-off value to predict an elevated risk of collisions was determined, as were its sensitivity and specificity, with the area under the receiver operating characteristic (AUROC) curve.

RESULTS: Patients with advanced glaucoma were involved in a significantly higher number of collisions in the DS than the age-matched and driving exposure time-matched normal subjects (119 vs 40, respectively, p<0.0001), especially in four specific DS scenarios. In these four scenarios, IVF sensitivity was significantly lower in the collision-involved patients than in the collision-uninvolved patients in subfields on or near the track of the simulated hazard (p<0.05). The subfields with the largest AUROC curve had values ranging from 0.72 to 0.91 and were located in the paracentral visual field just below the horizontal.

CONCLUSIONS: Our novel DS system effectively assessed visual impairment, showing that simulators may have future potential in educating patients.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print