SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mychasiuk R, Hehar H, Ma I, Kolb B, Esser MJ. Neuroscience 2014; 288: 145-155.

Affiliation

Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Calgary, Canada.

Copyright

(Copyright © 2014, International Brain Research Organization, Publisher Elsevier Publishing)

DOI

10.1016/j.neuroscience.2014.12.034

PMID

25555930

Abstract

Apart from therapeutic discovery, the study of mild traumatic brain injury (mTBI) has been focused on two challenges: why do a majority of individuals recover with little concern, while a considerable proportion suffer with persistent and often debilitating symptomology; and, how do mild injuries significantly increase risk for an early-onset neurodegeneration? Owing to a lack of observable damage following mTBI, this study was designed to determine if there were changes in neuronal morphology, synaptic connectivity, and epigenetic patterning that could contribute to the manifestation of persistent neurological dysfunction. Prefrontal cortex tissue from male and female rats was used for Golgi-Cox analysis along with the profiling of changes in gene expression (BDNF, DNMT1, FGF2, IGF1, Nogo-A, OXYR, and TERT) and telomere length, following a single mTBI or sham injury in the juvenile period. Golgi-Cox analysis of dendritic branch order, dendritic length, and spine density demonstrate that an early mTBI increases complexity of pyramidal neurons in the mPFC. Furthermore, there are also substantial changes in the expression levels of the 7 genes of interest and telomere length following a single mild injury in this brain region. The results from the neuroanatomical measures and changes in gene expression indicate that the mTBI disrupts normal pruning processes that are typically underway at this point in development. In addition, there are significant interactions between the social environment and epigenetic processes that work in concert to perpetuate neurological dysfunction.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print