SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kau LJ, Chen CS. IEEE J. Biomed. Health Inform. 2014; 19(1): 44-56.

Copyright

(Copyright © 2014, Institute of Electrical and Electronics Engineers)

DOI

10.1109/JBHI.2014.2328593

PMID

25486656

Abstract

We propose in this paper a novel algorithm as well as architecture for the fall accident detection and corresponding wide area rescue system based on a smart phone and the third generation (3G) networks. To realize the fall detection algorithm, the angles acquired by the electronic compass (ecompass) and the waveform sequence of the triaxial accelerometer on the smart phone are used as the system inputs. The acquired signals are then used to generate an ordered feature sequence and then examined in a sequential manner by the proposed cascade classifier for recognition purpose. Once the corresponding feature is verified by the classifier at current state, it can proceed to next state; otherwise, the system will reset to the initial state and wait for the appearance of another feature sequence. Once a fall accident event is detected, the user's position can be acquired by the global positioning system (GPS) or the assisted GPS (A-GPS), and sent to the rescue center via the 3G communication network so that the user can get medical help immediately. With the proposed cascaded classification architecture, the computational burden and power consumption issue on the smart phone system can be alleviated. Moreover, as we will see in the experiment that a distinguished fall accident detection accuracy up to 92% on the sensitivity and 99.75% on the specificity can be obtained when a set of 450 test actions in nine different kinds of activities are estimated by using the proposed cascaded classifier, which justifies the superiority of the proposed algorithm.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print