SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Schofield A, Barrett S. Biomed. Sci. Instrum. 2014; 50: 431-436.

Affiliation

University of Wyoming, Laramie.

Copyright

(Copyright © 2014, Instrument Society of America)

DOI

unavailable

PMID

25405455

Abstract

Limited mobility is something that affects approximately 6.8 million Americans. Approximately 1.7 million are using wheelchairs or scooters of some kind to enhance mobility. Everyday obstacles present a challenge to those in a wheelchair. Also, outdoor environments such as campsites, lakes, or even grass fields provide additional challenges for those with limited mobility. This project provides a solution to some of the limitations faced by those in wheelchairs. The wheels and tires of the wheelchair allow navigation through most terrains such as grass, gravel, and sand. Furthermore, as a wheelchair climbs or descends a hill it becomes unstable and the user risks tipping the wheelchair causing injury or even death. The self-leveling wheelchair uses an accelerometer to determine its angle of inclination and depending on user interface choices will display the angle or raise the seat with linear actuators to keep the seat level. This will keep the center of gravity towards the front of the chair when going up a hill and towards the back of the chair when going down a hill. This enhanced stability will give the user the confidence and ability to go places where most traditional wheelchairs can not. The chair has the ability to self-level at up to 45 degree and can provide a manual lift of 6 inches. The design presented in this report is patent pending.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print