SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ogwueleka FN, Misra S, Ogwueleka TC, Fernandez-Sanz L. Acta polytechnica Hungarica 2014; 11(5): 177-197.

Copyright

(Copyright © 2014, Óbuda University)

DOI

unavailable

PMID

unavailable

Abstract

Road traffic accidents (RTA) are one of the major root causes of the unnatural loses of human beings all over the world. Although the rates of RTAs are decreasing in most developed countries, this is not the case in developing countries. The increase in the number of vehicles and inefficient drivers on the road, as well as to the poor conditions and maintenance of the roads, are responsible for this crisis in developing countries. In this paper, we produce a design of an Artificial Neural Network (ANN) model for the analysis and prediction of accident rates in a developing country. We apply the most recent (1998 to 2010) data to our model. In the design, the number of vehicles, accidents, and population were selected and used as model parameters. The sigmoid and linear functions were used as activation functions with the feed forward-back propagation algorithm. The performance evaluation of the model signified that the ANN model is better than other statistical methods in use.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print