SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Whitmore PM. Nat. Hazards 1993; 8(1): 59-73.

Copyright

(Copyright © 1993, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/BF00596235

PMID

unavailable

Abstract

Tsunamis are numerically modeled using the nonlinear shallow-water equations for three hypothetical Cascadia subduction zone earthquakes. Maximum zero-to-peak tsunami amplitudes and currents are tabulated for 131 sites along the North American coast. Earthquake source parameters are chosen to satisfy known subduction zone configuration and thermal constraints. These source parameters are used as input to compute vertical sea-floor displacement. The three earthquakes modeled are moment magnitude 8.8, 8.5, and 7.8. Maximum zero-to-peak tsunami amplitude for theMw = 8.8 earthquake is near 6 m normal to the fault break and maximum current is near 3.5 m/s. Maximum amplitudes decrease by about one-half north and south of the fault break in the source region. Tsunami amplitudes vary along the Alaskan coast from less than 0.5 to 1.6 m. The modeled amplitudes for theMw = 8.8 quake decrease to less than 0.4 m south of Point Conception, CA. TheMw = 7.8 earthquake generates a tsunami with a maximum amplitude of less than 1 m normal to the source. North and south of the fault break the maximum amplitude again decreases by about one-half. In all the models, amplitudes and currents arc less than one-sixth of the outer coast value within Puget Sound.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print