SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hänninen M. Accid. Anal. Prev. 2014; 73C: 305-312.

Affiliation

Aalto University, School of Engineering, Department of Applied Mechanics, Research Group on Maritime Risk and Safety, P.O. Box 12200, FI-00076 Aalto, Finland. Electronic address: maria.hanninen@aalto.fi.

Copyright

(Copyright © 2014, Elsevier Publishing)

DOI

10.1016/j.aap.2014.09.017

PMID

25269098

Abstract

Bayesian networks are quantitative modeling tools whose applications to the maritime traffic safety context are becoming more popular. This paper discusses the utilization of Bayesian networks in maritime safety modeling. Based on literature and the author's own experiences, the paper studies what Bayesian networks can offer to maritime accident prevention and safety modeling and discusses a few challenges in their application to this context. It is argued that the capability of representing rather complex, not necessarily causal but uncertain relationships makes Bayesian networks an attractive modeling tool for the maritime safety and accidents. Furthermore, as the maritime accident and safety data is still rather scarce and has some quality problems, the possibility to combine data with expert knowledge and the easy way of updating the model after acquiring more evidence further enhance their feasibility. However, eliciting the probabilities from the maritime experts might be challenging and the model validation can be tricky. It is concluded that with the utilization of several data sources, Bayesian updating, dynamic modeling, and hidden nodes for latent variables, Bayesian networks are rather well-suited tools for the maritime safety management and decision-making.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print