SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Stepanek J, Pradhan GN, Cocco D, Smith BE, Bartlett J, Studer M, Kuhn F, Cevette MJ. Aviat. Space Environ. Med. 2014; 85(7): 700-707.

Copyright

(Copyright © 2014, Aerospace Medical Association)

DOI

unavailable

PMID

25022157

Abstract

INTRODUCTION: Visual performance impairment after hypoxia is well recognized in military and civilian aviation. The aims of this study were: 1) to assess oculometric features such as blink metrics, pupillary dynamics, fixations, and saccades as cognitive indicators of early signs of hypoxia; and 2) to analyze the impact of different hypoxic conditions ["hypoxic hypoxia" (HH) and "isocapnic hypoxia" (IH)] on specified oculometrics during mental workloads.

METHODS: Oculometric data were collected on 25 subjects under 3 conditions: normoxia, HH (8% O2 + balance N2), and IH (7% O2 + 5% CO2 + balance N2). The mental workload task consisted of reading aloud linear arrays of numbers after exposure to gas mixtures.

RESULTS: Blink rates were significantly increased under hypoxic conditions (by +100.7% in HH and by +92.8% in IH compared to normoxia). A faster recovery of blink rate was observed in transitioning from IH (23.6% vs. 76.3%) to normoxia. The percentage change in pupil size fluctuation was increased under HH more than under IH (29% vs. 4.4%). Under HH average fixation time and target area size were significantly higher than under IH. Total saccadic times under hypoxic conditions were significantly increased compared with normoxia.

CONCLUSIONS: These results suggest that oculometric changes are indicators of hypoxia, which can be monitored using compact, portable, noninvasive eye-tracking devices in a cockpit analogous environment to detect hypoxia-induced physiological changes in aircrew. Comparative results between HH and IH support the potential role of carbon dioxide in augmenting cerebral perfusion and hence improved tissue oxygen delivery.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print