SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Francesconi R, Mager M. Aviat. Space Environ. Med. 1979; 50(8): 799-802.

Copyright

(Copyright © 1979, Aerospace Medical Association)

DOI

unavailable

PMID

496747

Abstract

To assess the role of high-energy phosphate compounds in the etiology of heat injury with respect to the release of intracellular constituents, the susceptibility of selected tissues to heat injury, and the shock-like demise of the animals, rats were exercised on a treadmill (9.14 m/min) in a hot environment (34.5-35 degrees C) to a rectal temperature (Tre) of 42.5-43 degrees C. In the heart, kidney, left lateral lobe of the liver, and gastrocnemius muscle extricated from animals immediately upon termination of the treadmill run, levels of glucose-6-phosphate (G-6-P), adenosine triphosphate (ATP), and creatine phosphate (CP) were unchanged when compared with sedentary controls. In animals which had been resuscitated by infusion of isotonic saline into a jugular catheter, levels of CP were significantly (p less than 0.025) elevated in gastrocnemius muscle. In rats which were unconscious and succumbing to the effects of hyperthermic injury, levels of hepatic G-6-P and ATP were significantly reduced (p less than 0.05, p less than 0.02, respectively). These results indicate that the combination of exhaustive excercise/heat injury had the most deleterious effects upon hepatic metabolism. However, while resuscitation with physiological saline may be accompanied by an increased synthesis of CP, hyperthermic exhaustion and the concomitant efflux of cellular constituents cannot be attributed to a depletion or even a decrement of high-energy phosphates in vital tissues.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print