SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ghafghazi G, Hatzopoulou M. Transportation (Amst) 2014; 41(3): 633-649.

Copyright

(Copyright © 2014, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s11116-014-9513-x

PMID

unavailable

Abstract

This study focuses on the development of a microscopic traffic simulation and emission modeling system which aims at quantifying the effects of different types of traffic calming measures on vehicle emissions both at a link-level and at a network-level. It also investigates the effects of isolated traffic-calming measures at a corridor level and area-wide calming schemes, using a scenario analysis. Our study is set in Montreal, Canada where a traffic simulation model for a dense urban neighborhood is extended with capabilities for microscopic emission estimation. The results indicate that on average, isolated calming measures increase carbon dioxide (CO2), carbon monoxide (CO), and nitrogen oxides (NOx) emissions by 1.5, 0.3, and 1.5 %, respectively across the entire network. Area-wide schemes result in a percentage increase of 3.8 % for CO2, 1.2 % for CO, and 2.2 % for NOx across the entire network. Along specific corridors where traffic calming measures were simulated, increases in emissions of up to 83 % were observed. We also account for the effect of different measures on traffic volumes and observe moderate decreases in areas that have undergone traffic calming. In spite of traffic flow reductions, total emissions do increase.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print