SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Regmi NR, Giardino JR, McDonald EV, Vitek JD. Landslides 2014; 11(2): 247-262.

Copyright

(Copyright © 2014, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10346-012-0380-2

PMID

unavailable

Abstract

The Paonia-McClure Pass area of Colorado has been recognized as a region highly susceptible to mass movement. Because of the dynamic nature of this landscape, accurate methods are needed to predict susceptibility to movement of these slopes. The area was evaluated by coupling a geographic information system (GIS) with logistic regression methods to assess susceptibility to landslides. We mapped 735 shallow landslides in the area. Seventeen factors, as predictor variables of landslides, were mapped from aerial photographs, available public data archives, ETM + satellite data, published literature, and frequent field surveys. A logistic regression model was run using landslides as the dependent factor and landslide-causing factors as independent factors (covariates). Landslide data were sampled from the landslide masses, landslide scarps, center of mass of the landslides, and center of scarp of the landslides, and an equal amount of data were collected from areas void of discernible mass movement. Models of susceptibility to landslides for each sampling technique were developed first. Second, landslides were classified as debris flows, debris slides, rock slides, and soil slides and then models of susceptibility to landslides were created for each type of landslide. The prediction accuracies of each model were compared using the Receiver Operating Characteristic (ROC) curve technique. The model, using samples from landslide scarps, has the highest prediction accuracy (85 %), and the model, using samples from landslide mass centers, has the lowest prediction accuracy (83 %) among the models developed from the four techniques of data sampling. Likewise, the model developed for debris slides has the highest prediction accuracy (92 %), and the model developed for soil slides has the lowest prediction accuracy (83 %) among the four types of landslides. Furthermore, prediction from a model developed by combining the four models of the four types of landslides (86 %) is better than the prediction from a model developed by using all landslides together (85 %).


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print