SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kabeshova A, Annweiler C, Fantino B, Philip T, Gromov VA, Launay CP, Beauchet O. Aging Clin. Exp. Res. 2014; 26(3): 331-336.

Affiliation

Division of Geriatric Medicine, Department of Neuroscience, Angers University Hospital, 49933, Angers cedex 9, France.

Copyright

(Copyright © 2014, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s40520-014-0232-0

PMID

24781832

Abstract

BACKGROUND: Regression tree (RT) analyses are particularly adapted to explore the risk of recurrent falling according to various combinations of fall risk factors compared to logistic regression models. The aims of this study were (1) to determine which combinations of fall risk factors were associated with the occurrence of recurrent falls in older community-dwellers, and (2) to compare the efficacy of RT and multiple logistic regression model for the identification of recurrent falls.

METHODS: A total of 1,760 community-dwelling volunteers (mean age ± standard deviation, 71.0 ± 5.1 years; 49.4 % female) were recruited prospectively in this cross-sectional study. Age, gender, polypharmacy, use of psychoactive drugs, fear of falling (FOF), cognitive disorders and sad mood were recorded. In addition, the history of falls within the past year was recorded using a standardized questionnaire.

RESULTS: Among 1,760 participants, 19.7 % (n = 346) were recurrent fallers. The RT identified 14 nodes groups and 8 end nodes with FOF as the first major split. Among participants with FOF, those who had sad mood and polypharmacy formed the end node with the greatest OR for recurrent falls (OR = 6.06 with p < 0.001). Among participants without FOF, those who were male and not sad had the lowest OR for recurrent falls (OR = 0.25 with p < 0.001). The RT correctly classified 1,356 from 1,414 non-recurrent fallers (specificity = 95.6 %), and 65 from 346 recurrent fallers (sensitivity = 18.8 %). The overall classification accuracy was 81.0 %. The multiple logistic regression correctly classified 1,372 from 1,414 non-recurrent fallers (specificity = 97.0 %), and 61 from 346 recurrent fallers (sensitivity = 17.6 %). The overall classification accuracy was 81.4 %.

CONCLUSIONS: Our results show that RT may identify specific combinations of risk factors for recurrent falls, the combination most associated with recurrent falls involving FOF, sad mood and polypharmacy. The FOF emerged as the risk factor strongly associated with recurrent falls. In addition, RT and multiple logistic regression were not sensitive enough to identify the majority of recurrent fallers but appeared efficient in detecting individuals not at risk of recurrent falls.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print