SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huang ML, Zhao K. ISRN Probab. Stat. 2013; 2013: 1-12.

Copyright

(Copyright © 2013, Hindawi Publishing)

DOI

10.1155/2013/829131

PMID

unavailable

Abstract

We propose a weighted estimation method for risk models. Two examples of natural disasters are studied: hurricane loss in the USA and forest fire loss in Canada. Risk data is often fitted by a heavy-tailed distribution, for example, a Pareto distribution, which has many applications in economics, actuarial science, survival analysis, networks, and other stochastic models. There is a difficulty in the inference of the Pareto distribution which has infinite moments in the heavy-tailed case. Firstly this paper applies the truncated Pareto distribution to overcome this difficulty. Secondly, we propose a weighted semiparametric method to estimate the truncated Pareto distribution. The idea of the new method is to place less weight on the extreme data values. This paper gives an exact efficiency function, -optimal weights and -optimal weights of the new estimator. Monte Carlo simulation results confirm the theoretical conclusions. The two above mentioned examples are analyzed by using the proposed method. This paper shows that the new estimation method is more efficient by mean square error relative to several existing methods and fits risk data well.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print