SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Senouci A, Elabbasy M, Elwakil E, Abdrabou B, Zayed T. Struct. Infrastruct. Eng. 2014; 10(3): 375-387.

Copyright

(Copyright © 2014, Informa - Taylor and Francis Group)

DOI

10.1080/15732479.2012.756918

PMID

unavailable

Abstract

Oil and gas pipelines transport millions of dollars of goods everyday worldwide. Even though they are the safest way to transport petroleum products, pipelines do still fail generating hazardous consequences and irreparable environmental damages. Many models have been developed in the last decade to predict pipeline failures and conditions. However, most of these models were limited to one failure type, such as corrosion failure, or relied mainly on expert opinion analysis. The objective of this paper is to develop a model that predicts the failure cause of oil pipelines based on factors other than corrosion. Two models are developed to help decision makers predict failure occurrence. Regression analysis and artificial neural networks (ANNs) models were developed based on historical data of pipeline accidents. The two models were able to satisfactory predict pipeline failures due to mechanical, operational, corrosion, third party and natural hazards with an average validity of 90% for the regression model and 92% for the ANN model. The developed models assist decision makers and pipeline operators to predict the expected failure cause(s) and to take the necessary actions to avoid them.

Keywords: Pipeline transportation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print