SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Batke SP, Jocque M, Kelly DL. PLoS One 2014; 9(3): e91306.

Affiliation

Department of Botany and Trinity Centre for Biodiversity Research, Trinity College Dublin, Dublin, Ireland; Operation Wallacea, Old Bolingbroke, United Kingdom.

Copyright

(Copyright © 2014, Public Library of Science)

DOI

10.1371/journal.pone.0091306

PMID

24614168

PMCID

PMC3948866

Abstract

High energy weather events are often expected to play a substantial role in biotic community dynamics and large scale diversity patterns but their contribution is hard to prove. Currently, observations are limited to the documentation of accidental records after the passing of such events. A more comprehensive approach is synthesising weather events in a location over a long time period, ideally at a high spatial resolution and on a large geographic scale. We provide a detailed overview on how to generate hurricane exposure data at a meso-climate level for a specific region. As a case study we modelled landscape hurricane exposure in Cusuco National Park (CNP), Honduras with a resolution of 50 m×50 m patches. We calculated actual hurricane exposure vulnerability site scores (EVVS) through the combination of a wind pressure model, an exposure model that can incorporate simple wind dynamics within a 3-dimensional landscape and the integration of historical hurricanes data. The EVSS was calculated as a weighted function of sites exposure, hurricane frequency and maximum wind velocity. Eleven hurricanes were found to have affected CNP between 1995 and 2010. The highest EVSS's were predicted to be on South and South-East facing sites of the park. Ground validation demonstrated that the South-solution (i.e. the South wind inflow direction) explained most of the observed tree damage (90% of the observed tree damage in the field). Incorporating historical data to the model to calculate actual hurricane exposure values, instead of potential exposure values, increased the model fit by 50%.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print