SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Raub JA, Benignus VA. Neurosci. Biobehav. Rev. 2002; 26(8): 925-940.

Affiliation

United States Environmental Protection Agency, National Center for Environmental Assessment, Mail Code B-243-01, Research Triangle Park, NC 27711, USA. raub.james@epa.gov

Copyright

(Copyright © 2002, Elsevier Publishing)

DOI

unavailable

PMID

12667497

Abstract

Carbon monoxide (CO) is a colorless, tasteless, odorless, and non-irritating gas formed when carbon in fuel is not burned completely. It enters the bloodstream through the lungs and attaches to hemoglobin (Hb), the body's oxygen carrier, forming carboxyhemoglobin (COHb) and thereby reducing oxygen (O(2)) delivery to the body's organs and tissues. High COHb concentrations are poisonous. Central nervous system (CNS) effects in individuals suffering acute CO poisoning cover a wide range, depending on severity of exposure: headache, dizziness, weakness, nausea, vomiting, disorientation, confusion, collapse, and coma. At lower concentrations, CNS effects include reduction in visual perception, manual dexterity, learning, driving performance, and attention level. Earlier work is frequently cited to justify the statement that CO exposure sufficient to produce COHb levels of ca. 5% would be sufficient to produce visual sensitivity reduction and various neurobehavioral performance deficits. In a recent literature re-evaluation, however, the best estimate was that [COHb] would have to rise to 15-20% before a 10% reduction in any behavioral or visual measurement could be observed. This conclusion was based on (1) critical review of the literature on behavioral and sensory effects, (2) review and interpretation of the physiological effects of COHb on the CNS, (3) extrapolation from the effects of hypoxic hypoxia to the effects of CO hypoxia, and (4) extrapolation from rat behavioral effects of CO to humans. Also covered in this review article are effects of chronic CO exposure, the discovery of neuroglobin, a summary of the relatively new role for endogenous CO in neurotransmission and vascular homeostasis, groups which might be especially sensitive to CO, and recommendations on further research. The interested reader is directed to other published reviews of the literature on CO and historically seminal references that form our understanding of this ubiquitous gas.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print