SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhu H, Li L, Jin M, Li H, Song J. Proc. Inst. Mech. Eng. Pt. D J. Automobile Eng. 2013; 227(10): 1431-1445.

Copyright

(Copyright © 2013, Institution of Mechanical Engineers, Publisher SAGE Publishing)

DOI

10.1177/0954407013482070

PMID

unavailable

Abstract

The yaw rate is a key state for vehicle dynamics stability control. However, the time delay from the steering input to the yaw rate measured by the yaw rate sensor changes with the frequency of the steering input and can also be affected by the road friction and the vehicle speed. In order to reduce the time delay effect on the vehicle dynamics stability controller, a new comprehensive yaw rate prediction method is proposed. A seven-degree-of-freedom non-linear vehicle model is adopted as the prediction model. A quadratic polynomial extrapolation method is used to compute the future steering-wheel input in the prediction horizon. A model-based yaw rate prediction algorithm is combined with a feedback compensator to guarantee the robustness of the algorithm. Meanwhile, a linear extrapolation method is utilized to minimize the defects of model-based prediction since the simplified vehicle model cannot fully model the hysteresis or other non-linearities of the vehicle systems. Experimental tests on the vehicle show that the combined algorithm is able to predict the yaw rate about 100 ms earlier than the sensor measurement is. Simulations show that the vehicle stability control strategy based on the proposed comprehensive prediction method has a better performance than the traditional control strategy does.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print