SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Pavlov I U, Diaci J, Mo Ina J, Jezer Ek M. Biomed. Eng. Online 2013; 12(1): 96.

Copyright

(Copyright © 2013, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/1475-925X-12-96

PMID

24069910

Abstract

BACKGROUND: Knowing the orientation of the head is important in many fields, including medicine. Many methods and measuring systems exist, but usually they use different markers or sensors attached to the subject's head for head orientation determination. In certain applications these attachments may represent a burden or a distraction to the subject under study which may have an unfavourable impact on the measurement. We propose a non-contact optical method for head-to-trunk orientation measurement that does not require any attachments to the subject under study. METHODS: An innovative handheld 3D apparatus has been developed for non-invasive and fast 3D shape measurements. It is based on the triangulation principle in combination with fringe projection. The shape of the subject's upper trunk and head is reconstructed from a single image using the Fourier transform profilometry method. Two shape measurements are required to determine the head-to-trunk orientation angles: one in the reference (neutral) position and the other one in the position of interest. The algorithm for the head-to-trunk orientation angle extraction is based on the separate alignment of the shape of the subject's upper trunk and head against the corresponding shape in the reference pose. Single factor analysis of variance (ANOVA) was used for statistical characterisation of the method precision. RESULTS: The method and the 3D apparatus were verified in-vitro using a mannequin and a reference orientation tracker. The uncertainty of the calculated orientation was 2[degree sign]. During the in-vivo test with a human subject diagnosed with cervical dystonia (aged 60), the repeatability of the measurements was 3[degree sign]. In-vitro and in-vivo comparison was done on the basis of an experiment with the mannequin and a healthy male (aged 29). These results show that only the difference between flexion/extension measured angles was statistically significant. The differences between means were less than 1[degree sign] for all ranges. CONCLUSIONS: The new non-contact method enables the compensation of the movement of the measuring instrument or the subject's body as a whole, is non-invasive, requires little additional equipment and causes little stress for the subject and operator. We find that it is appropriate for measurements of the head orientation with respect to the trunk for the characterization of the cervical dystonia.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print