SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Veraverbeke S, Hook SJ. Int. J. Wildland Fire 2013; 22(5): 707-720.

Copyright

(Copyright © 2013, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF12168

PMID

unavailable

Abstract

We used a Landsat Thematic Mapper (TM) image from the 2011 Wallow fire in Arizona, USA, in combination with field data to assess different methods for determining fire severity. These include the normalised burn ratio (NBR), the differenced NBR (dNBR), the relative dNBR (RdNBR) and the burned fraction (BF) estimated by spectral mixture analysis (SMA). The Geo Composite Burn Index (GeoCBI) and vegetation mortality data were used as ground truth. Of all the remotely sensed measures evaluated the dNBR had the best performance (GeoCBI-dNBR R2 = 0.84), which supports the operational use of the dNBR for post-fire management. Of the other remotely sensed measures, the SMA-derived BF also had moderately high correlations with the GeoCBI (R2 = 0.66). Both approaches demonstrated their usefulness for refining modelled CC values, however, the SMA approach has the advantage of providing transferable quantitative estimates without the need for calibration with field data. The carbon emission estimates that included fire severity were more than 50% lower than the estimate derived from modelling alone. These results suggest that for certain fire types, especially mixed-severity fires, current emission estimates are significantly overestimated, which will affect global carbon emission estimates from wildfires.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print