SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Van Linn PF, Nussear KE, Esque TC, DeFalco LA, Inman RD, Abella SR. Int. J. Wildland Fire 2013; 22(6): 770-779.

Copyright

(Copyright © 2013, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF12158

PMID

unavailable

Abstract

Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print