SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Veraverbeke S, Verstraeten WW, Lhermitte S, Goossens R. Int. J. Wildland Fire 2010; 19(5): 558-569.

Copyright

(Copyright © 2010, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF09069

PMID

unavailable

Abstract

A vast area (more than 100 000 ha) of forest, shrubs and agricultural land burned on the Peloponnese peninsula in Greece during the 2007 summer. Three pre- and post-fire differenced Landsat Thematic Mapper (TM)-derived spectral indices were correlated with field data of burn severity for these devastating fires. These spectral indices were the Normalised Difference Vegetation Index (NDVI), the Normalised Difference Moisture Index (NDMI) and the Normalised Burn Ratio (NBR). The field data consist of 160 Geo Composite Burn Index (GeoCBI) plots. In addition, indices were evaluated in terms of optimality. The optimality statistic is a measure for the index's sensitivity to fire-induced vegetation depletion. Results show that the GeoCBI-dNBR (differenced NBR) approach yields a moderately high R2 = 0.65 whereas the correlation between field data and the differenced NDMI (dNDMI) and the differenced NDVI (dNDVI) was clearly lower (respectively R2 = 0.50 and R2 = 0.46). The dNBR also outperformed the dNDMI and dNDVI in terms of optimality. The resulting median dNBR optimality equalled 0.51 whereas the median dNDMI and dNDVI optimality values were respectively 0.50 and 0.40 (differences significant for P < 0.001). However, inaccuracies observed in the spectral indices approach indicate that there is room for improvement. This could imply improved preprocessing, revised index design or alternative methods.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print