SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

King KJ, de Ligt RM, Cary GJ. Int. J. Wildland Fire 2011; 20(4): 563-577.

Copyright

(Copyright © 2011, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF09073

PMID

unavailable

Abstract

This study used simulation modelling to investigate fire and carbon dynamics for projected warmer and drier climates in the south-eastern Australian high country. A carbon accounting model FullCAM and the landscape fire regime simulator FIRESCAPE were combined and used to simulate several fire management options under three climate scenarios - the recent climate (1975-2005); a moderate climate projected for 2070 (B1); and a more extreme climate projected for 2070 (A1FI). For warmer and drier climates, model simulations predicted (i) an increase in fire incidence; (ii) larger areas burned; (iii) higher mean fire intensities; (iv) shorter fire cycle lengths; (v) a greater proportion of fires burning earlier in the fire season; (vi) a reduction in carbon stores; (vii) a reduction in carbon sequestration rates; and (viii) an increase in the proportion of stored carbon emitted to the atmosphere. Prescribed burning at historical or twice historical levels had no effect on fire or carbon dynamics. In contrast, increasing the initial attack success (a surrogate for suppression) partially offset the adverse effects of warmer and drier climates on fire activity, but not on carbon dynamics. For the south-eastern Australian high country, simulations indicated that fire and carbon dynamics are sensitive to climate change, with simulated fire management only being able to partially offset the adverse effects of warmer and drier climate.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print