SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Simeoni A, Salinesi P, Morandini F. Int. J. Wildland Fire 2011; 20(5): 625-632.

Copyright

(Copyright © 2011, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF09006

PMID

unavailable

Abstract

Vegetation cover is a heterogeneous medium composed of different kinds of fuels and non-combustible parts. Some properties of real fires arise from this heterogeneity. Creating heterogeneous fuel areas may be useful both in land management and in firefighting by reducing fire intensity and fire rate of spread. The spreading of a fire through a heterogeneous medium was studied with a two-dimensional reaction-diffusion physical model of fire spread. Randomly distributed combustible and non-combustible square elements constituted the heterogeneous fuel. Two main characteristics of the fire were directly computed by the model: the size of the zone influenced by the heat transferred from the fire front and the ignition condition of vegetation. The model was able to provide rate of fire spread, temperature distribution and energy transfers. The influence on the fire properties of the ratio between the amount of combustible elements and the total amount of elements was studied. The results provided the same critical fire behaviour as described in both percolation theory and laboratory experiments but the results were quantitatively different because the neighbourhood computed by the model varied in time and space with the geometry of the fire front. The simulations also qualitatively reproduced fire behaviour for heterogeneous fuel layers as observed in field experiments. This study shows that physical models can be used to study fire spreading through heterogeneous fuels, and some potential applications are proposed about the use of heterogeneity as a complementary tool for fuel management and firefighting.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print