SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hoffman CM, Hull Sieg C, McMillin JD, Fulé PZ. Int. J. Wildland Fire 2012; 21(3): 306-312.

Copyright

(Copyright © 2012, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF11019

PMID

unavailable

Abstract

Landscape-level bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks occurred in Arizona ponderosa pine (Pinus ponderosa Dougl. ex Law.) forests from 2001 to 2003 in response to severe drought and suitable forest conditions. We quantified surface fuel loadings and depths, and calculated canopy fuels based on forest structure attributes in 60 plots established 5 years previously on five national forests. Half of the plots we sampled in 2007 had bark beetle-caused pine mortality and half did not have mortality. Adjusting for differences in pre-outbreak stand density, plots with mortality had higher surface fuel and lower canopy fuel loadings 5 years after the outbreak compared with plots without mortality. Total surface fuels averaged 2.5 times higher and calculated canopy fuels 2 times lower in plots with mortality. Nearly half of the trees killed in the bark beetle outbreak had fallen within 5 years, resulting in loadings of 1000-h woody fuels above recommended ranges for dry coniferous forests in 20% of the mortality plots. We expect 1000-h fuel loadings in other mortality plots to exceed recommended ranges as remaining snags fall to the ground. This study adds to previous work that documents the highly variable and complex effects of bark beetle outbreaks on fuel complexes.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print