SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Magnussen S, Taylor SW. Int. J. Wildland Fire 2012; 21(4): 342-356.

Copyright

(Copyright © 2012, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF11088

PMID

unavailable

Abstract

Daily records of the location and timing of human- and lightning-caused fires in British Columbia from 1981 to 2000 were used to estimate the probability of fire occurrence within 950 20 × 20-km spatial units (~950 000 km2) using a binary logistic regression modelling framework. Explanatory variables included lightning strikes, forest cover, surface weather observations, atmospheric stability indices and fuel moisture codes of the Canadian Fire Weather Index System. Because the influence of the explanatory variables in the models varied from year to year, model coefficients were estimated for each year. The arithmetic mean of the model coefficients was used for making daily predictions in a future year. A confidence interval around the mean or a quantile was derived from the ensemble of 20 model predictions. A leave-1-year-out cross-validation procedure was used to assess model performance for random years. The daily number of lightning-caused fires was reasonably well predicted at the provincial level (R = 0.83) and slightly less well predicted for a smaller (75 000 km2) administrative region. The daily number of human-caused fires was less well predicted at both the provincial (R = 0.55) and the regional level. The ability to estimate confidence intervals from the ensemble of model predictions is an advantage of the year-specific approach.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print