SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Caprioli D, Sawiak SJ, Merlo E, Theobald DE, Spoelder M, Jupp B, Voon V, Carpenter TA, Everitt BJ, Robbins TW, Dalley JW. Biol. Psychiatry 2014; 75(2): 115-123.

Affiliation

Behavioural and Clinical Neuroscience Institute and Department of Psychology (DC, SJS, EM, DEHT, BJ, VV, TAC, BJE, TWR, JWD), University of Cambridge. Electronic address: daniele.caprioli@nih.gov.

Copyright

(Copyright © 2014, Elsevier Publishing)

DOI

10.1016/j.biopsych.2013.07.013

PMID

23973096

Abstract

BACKGROUND: Pathological forms of impulsivity are manifest in a number of psychiatric disorders listed in DSM-5, including attention-deficit/hyperactivity disorder and substance use disorder. However, the molecular and cellular substrates of impulsivity are poorly understood. Here, we investigated a specific form of motor impulsivity in rats, namely premature responding, on a five-choice serial reaction time task. METHODS: We used in vivo voxel-based magnetic resonance imaging and ex vivo Western blot analyses to investigate putative structural, neuronal, and glial protein markers in low-impulsive (LI) and high-impulsive rats. We also investigated whether messenger RNA interference targeting glutamate decarboxylase 65/67 (GAD65/67) gene expression in the nucleus accumbens core (NAcbC) is sufficient to increase impulsivity in LI rats. RESULTS: We identified structural and molecular abnormalities in the NAcbC associated with motor impulsivity in rats. We report a reduction in gray matter density in the left NAcbC of high-impulsive rats, with corresponding reductions in this region of glutamate decarboxylase (GAD65/67) and markers of dendritic spines and microtubules. We further demonstrate that the experimental reduction of de novo of GAD65/67 expression bilaterally in the NAcbC is sufficient to increase impulsivity in LI rats. CONCLUSIONS: These results reveal a novel mechanism of impulsivity in rats involving gamma aminobutyric acidergic and structural abnormalities in the NAcbC with potential relevance to the etiology and treatment of attention-deficit/hyperactivity disorder and related disorders.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print